ADOKETOCARPUS GEN. NOV., A MITRATE FROM THE LUDLOVIAN KILMORE SILTSTONE AND LOCHKOVIAN HUMEVALE FORMATION OF CENTRAL VICTORIA

MARCELLO RUTA AND PETER A. JELL

Abstract

Ruta, M. \& Jell, P.A. 199906 30: Adoketocarpus gen. nov., a mitrate from the Ludlovian Kilmore Siltstone and Lochkovian Humevale Formation of central Victoria. Memoirs of the Queensland Museum 43(1): 377-398. Brisbane. ISSN 0079-8835.

Abstract

The mitrate Adoketocarpus gen nov. is the first representative of the Paranacystidae from Australia. It occurs in central Victoria with A. acheronticus sp. nov. in the Ludlovian Kilmore Siltstone and A. janeae sp . nov. in the Lochkovian part of the Humevale Formation. Adoketocarpus has a simplified plate arrangement on the convex surface and a strongly twisted orifice; plating of the plano-concave surface resembles that of Middle Ordovician Enmitrocystella savilli from Morocco suggesting that the paranacystids may derive from borcal mitrocystitids. Fewer lateral marginal plates of the plano-concave surface, loss and sizc reduction of distal plates and enlargement of proximalmost plates of the convex surface would attend evolutionary transition from boreal mitrocystitids to paranacystids. Paranacystids formed a clade whose origin and evolution were apparently in Gondwanaland, where they probably dispersed in the Ordovician/Silurian. \square Paranacystidue, Adoketocarpus, Silurian, Devonian, Victoria.

Marcello Ruta, Department of Palaeontologv. Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; Peter A. Jell, Qneensland Mnseum, P.O. Box 3300, South Brishane 4101, Australia; received 3 December 1997.

The known Australian carpoid fauna of 4 endemic genera with 6 species is more abundant than faunas from other parts of Gondwana. Some Australian carpoids have affinities with species from Europe and North America (Gill \& Caster, 1960; Ruta, 1997a), whereas others have affinitics with taxa from South America, South Africa and New Zealand (Caster, 1956, 1983; Caster \& Gill, 1967; Philip, 1981; Haude, 1995; Ruta \& Theron, 1997). The new genus described herein has its nearest relatives in the Lower Devonian of South America and South Africa.

Among Australian carpoids none are closely related to the new genus. Rutroclypeus is the only solute known from Australia; it occurs in the Lower Devonian of Kinglake, Victoria, with R. junori (Withers. 1933), R. victoriae Gill \& Caster, 1960 and R. ? withersi Gill \& Caster, 1960. The other 3 monotypic genera are mitrate stylophorans of the Anomalocystitida: Tasmanicytidium burretti Caster, 1983 from the upper Llandovery Richea Shale of SW Tasmania, Notocarpos garratti Philip, 1981 from the upper Ludlovian part of the Humevale Formation near Whittlesea, central Victoria and Victoriacystis wilkinsi Gill \& Caster, 1960 (Ruta, 1997a) from the lower Ludlovian in the Dargile Formation near Heathcote and the Melbourne Formation at Hawthorn.

Extensive collections of echinoderms from the mid-Palaeozoic of central Victoria made over many years. but mainly during the early 1980s, are housed in the Museum of Victoria. This paper deals with a new paranacystid mitrate genus from the Upper Silurian and Lower Devonian of central Victoria. It is important because: 1 , it is the first Australian record for the Paranacystidae Caster, 1954; 2, its occurrence in the Upper Silurian is the earliest for the family, predating the Lower Devonian record in South America (Caster, 1954; Haude, 1995); 3, its anatomy can be reconstructed in detail, thus throwing light on several poorly known aspects of the paranacystids and prompting a new interpretation of thcir skeleton (Caster, 1954; Ruta, 1997c). 4, it provides additional evidence of the affinities between Siluro-Devonian mitrate faunas of Australia and the Malvinokaffric Realm (Caster, 1954, 1956, 1983; Gill \& Caster, 1960; Caster \& Gill, 1967; Philip, 1981; Parsley, 1991; Haude, 1995; Ruta \& Theron, 1997; Ruta, 1997c).

LOCALITIES. The mitrates described in this work are from 4 different localities in the Museum of Victoria locality register (NMVPL) representing 3 horizons.

NMVPL252 Middendorp's Quarry at Kinglake West is marked on the map of Williams (1964) and discussed elsewhere (Ruta \& .Jell. 1999); it
occurs in the Humevale Formation and the brachiopod fauna indicates the Boucotia janear Brachiopod Zonc (Garratt, 1983) of mid Lochkovian age.
NMVPL1924 (=T95 of Williams (1964)) is in fine sandstones in the bed of Mathieson Creek, 2 km S of the Kinglake West to Flowerdale Road. Carpoids are a minor component of an extensive fauna dominated by diverse crinoids and stelleroids and including brachiopods, bryozoans. corals (Pletrodictyum only), bivalves and several other minor groups. Williams (1964) showed this site to be in the same Sandstone Member (probably the Flowerdale Sandstone Member) as Collins Quarry near Kinglake West which is Lochkovian (Vandenberg, 1988) based on the brachiopods (Garratt, 1983).
NMVPL1927 is on the castern bank of Broadhurst Creek, where it crosses the Kilmore to Wandong Road, SSW of Kilmore in central Victoria. The locality occurs at $37^{\circ} 20^{\prime} 30^{\prime \prime} \mathrm{S}$, $144^{\circ} 59^{\prime} 35^{\prime \prime} \mathrm{E}$ (Grid Reference 220652) on the Kilmore 1:50,000 Geological Map (Vandenberg, 1992). The fossils come from the Kilmore Siltstonc (Vandenberg. 1992), a sequence of predominantly thin ($5-10 \mathrm{~cm}$), horizontally banded siltstones and very thin (less than 1 cm), cross-bedded sandstones with rare, irregularly interbedded turbidite sandstones. The sequence is more than $3,500 \mathrm{~m}$ thick. This huge thickness of siltstone indicates very rapid deposition on a tectonically stable shelf.
Graptolites indicate an early Ludlow age (Vandenberg, 1992) for the upper Kilmore Siltstone in the Kilmore district, from which most of the shelly faunas have been collected. Trilobites predominate, with rare brachiopods, bryozoans, ostracodes and rugose corals, all of which are concentrated mainly in coarse sandstones. Echinoderms are locally abundant in thick sandstone beds (Vandenberg, 1992). NMVPL 1927 occurs lower in the sequence and is most probably carly Ludlow in age, although the possibility that it belongs to the late Wenlock cannot be ruled out.
NMVPLI 960 refers to material excavated from a pipeline trench about 2 km towards Kilmore along the Kilmore to Wandong Road from NMVPL1927 in similar lithology and horizon.

SYSTEMATIC PALAEONTOLOGY

A standard anatomical nomenclature for mitrates does not exist (Caster, 1952; Caster \& Gill. 1967; Ubaghs, 1967; Kolata \& lollie, 1982;

Jefferies, 1986; Cripps, 1990; Kolata et al., 1991; Parsley, 1991, Beisswenger, 1994; Ruta, 1997a, b; Ruta \& Theron, 1997). The terminology of Ruta (in press) is followed for the external skeleton and plating pattern except that, for brevity, 'left' and 'right' replace 'anomalocystid' and 'abanomalocystid' respectively. For the internal anatomy, we use Ubaghs" (1967,1969) nomenclature, although reference is necessary to some other sources (Jefferies, 1986; Jefferics, 1973; Jelferies \& Lewis, 1978; Cripps, 1990; Beisswenger, 1994; Ruta \& Theron, 1997).

Unless otherwise stated illustrations arc of latex casts from decalcified siltstone, whitened with ammonium chloride sublimate.

Class STYLOPHORA Gill \& Caster, 1960 Order MITRATA Jaekel, 1918 Suborder incertae sedis Family PARANACYSTIDAE Caster, 1954

DIAGNOSIS (modified from Caster, 1954 and Ruta, 1997e). Plates A and C proximo-distally elongate, markedly different in shape and size; C scparated from left DLM and left PLM by A. Left PM slightly larger than right PM, with chevronshaped distal margin. Lateral and proximal marginal plates with well-developed subvertical projections. Skeletal sculpture of small elliptical knobs or tooth-like serrations along lateral margins of PLM plates, sometimes extending on proximal parts of lateral margins of left DLM and right EXM/ILM. Proximal 1/2-2/3 of convex body surface formed by proximo-distally elongate, shield-like C20 and C22. Distal part of convex surface of 2 smaller, subtrapezoidal plates with sinuous to gently concave lateral and distal margins and pronounced latero-distal angles. Small, subquadrangular to lozenge-shaped plate, possibly homologous with C21, between C20 and C22, proximally and subtrapezoidal plates, distally. Proximal part of appendage shorter than maximum width of cach PM plate. Styloid with slightly expanded to flared. non-recumbent blades and proximal stout articulation process. Proximal ossicles of distal part of appendage expanded transversely and much more robust than successive ossicles.

Adoketocarpus gen. nov.
TYPE SPECIES. Adoketocarpus acheronticus sp, now.
ETYMOLOGY. Greek adoketos, uncxpected and carpos, a fruit; refers to body shape and unusual skeletal features. Masculine.

FIG. S. Orientation of the skeleton of Adoketocarpus achermaticus gen et sp. nov. A, plano-concave surface. B, convex surface.

DJAGNOSIS. C at least twice as wide as A. Length of left and right PLM exceeding that of other lateral marginal plates. Lateral serrations on PLM plates decreasing in size proximodistally, somelimes extending on proximal part of lateral margins ol'lefi DLM and right EXM/ILM. Maximum width of proximal part of appendage less than maximum width of proximal margin of each PM platc.

Adoketocarpus acheronticus sp. nov. (Figs 1-2, 3D, 4-10, 1]A, D, E, 12A-D)

ETYMOLOGY. Greek Acheron. a river of the underworld in Greek mythology: most specimens were collected on the bank of astram.

MATERIAL. Holotype: NMVP100330. Paratypes: VMVP100331-100348 from NMVPL1927. Other material: NMVP100349-100356. QMF37202, 37208. 37212. 37213, 37214 from NMVPL1927; NMVP149357-149358 from NMVPL 1960.

DIAGNOSIS. Lateral body margins gently convex. Plate A subpentagonal to wedge-shaped, slightly to much wider proximally than distally and c. $1 / 2$ as large as C. Right LOP slightly smaller than C. roofing over the body offifice with almost straight proximo-lateral margins and sinuous latero-distal margins; distal process pronounced, with blunt, rounded chd. Left DLM nuch shorter than right EXM/ILM, abour as long as and slightly narower than lell LOP. Lefi LOP
than wide, ovato-lanecolatelo pyriform, slightly (Figs 1-2, 3D, 4A-E, 5C, 11 A, $B, D)$. Maximun width about wice as lin away from distal process of right LOP as lrom proximal excavation for appendage insertion Lateral margins more strongly convex proximally than distally; right margin slightly longer than left margin. Subvertical projections of lateral marginal plates visible when the convex surface is oriented towards the observer (Figs 4F. $6 \mathrm{~A}, \mathrm{C}, \mathrm{D}, 7 \mathrm{~A}, \mathrm{~B}, 11 \mathrm{E}, 12 \mathrm{D})$. Distal body orifice twisted leftward and framed by radially arranged platelets of different shape and size (Figs 4F, 6A-D). Plano-concave surface slightly raised along latcral margins and near proximo-lateral angles and shallower centrally (Figs 4A-E, 5A-D). Maximum curvature of convex surface at the level of its proximal 1/3 (Figs GA, C, 7B, 9B).

Meastarements. Holotype (Fig. 4A): c. 4.7 mm wide and 6.7 mm long. Smallest specimen (Fig. 4C,F): c. 2.7 mm wide and 3.7 mm long. Largest specimen (Fig. 4E): estimated body width and length c.5.7mm and 7.7 mm , respectively.

Plano-concave sutface. Weakly concave surface ol 11 medium to large plates. Marginal plates in 2 groups of 3, a distal element rooling over the body oritice and 2 proximal elements contributing to excavation for appendage insertion (Figs $1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{D}, 4 \mathrm{~A}-\mathrm{E}, 5 \mathrm{~A} . \mathrm{C}, 11 \mathrm{~A}, \mathrm{~B}, \mathrm{D})$. Hcight of subvertical projections of lateral marginal plates approximately constant over most of their length,

FIG 2. Reconstruction of Adohetocarpus whenomicus gen. el sp. nov. (appendage omitted) Λ, plano-concave surface, 13 , left lateral view. C, convex surlace. D, proximal view. E, distal view (hatched area shows space possibly occupied in life by polygonal plates).
only slightly decreasing near latero-distal angles of plano-eoneave surface and at the level of proximal $1 / 3$ of both left and right PLM (Figs 2B. 4D-E. 5A,C.6A.C, 7A. 11E): subvertical projections of PM plates higher than those of lateral marginal plates. rectangular to trapezoidal in proximal view and flat to gently convex externally (Figs 2A-D, 4D, 5A-D). Subpentagonal left LOP and trapezoidal right DLM forming latero-distal angles of plano-coneave surface: left LOP slightly wider and longer than right DLM. Left DLM and right EXM/ILM subrectangular and proximo-distally elongatc; length of left DLM e. $2 / 3$ that of right EXM/ILM. Left and right PLM subequal in shape and size. triangular and contributing to proximo-lateral angles of body: lateral margins of both plates PLM with $4-5$ serrations rapidly decreasing in size proximodistally and cither gradually merging into each other or neatly separated: 2-3 proximalmost
serrations with blunt, rounded apex, steep distal margin and gentle proximal margin: 1-2 very shallow serrations near proximal $1 / 3$ of lateral margins of left DLM and right EXM/ILM (Figs 1A. 2A, 3D, 4A-D, 5C, 7A, 11A). Distal margin of left PM longer than distal margin of right PM and elevron-shaped. the right arm of the cherron being as long as or longer than its left arm: median 1/2 of proximal margins of both plates PM excarated for inscrtion of appendage: suture between such plates generally bending slightly rightward distally: transverse thickening sometimes observed along their proximal margins (Figs 4D-E. 5A-D). 1rregularly pentagonal right LOP slightly smaller than C. with prominent plectrum-shaped to scmicircular distal proeess. gently sinuous latero-distal margins and almost straight proximo-lateral margins (Figs 4A-E, 5A,C, 11A,B,D): distal process immediatcly lcft of longitudinal body axis. Plate A

FIG. 3. Plate nomenclature of the plano-concave (lcft) and convex (right) surfaces in 3 mitrocystitids and in Adoketocarpus acheronticus gen. et sp. nov. Specimens not to the same scale. A. Mitrocystella barrandei (redrawn from Ubaghs, 1968). B, Mitrocystella incipiens (simplified from Jefferies, 1986). C Eumitrocystella savilli (modified from Beisswenger, 1994). D, Adoketocarpus acheronticus gen. et sp. nov.
subpentagonal to wedge-shaped, longer than wide, slightly to much wider proximally than distally, comparable in size with left and right DLM (Figs 4A-D, 5C, 11A, B,D) and in contact with left LOP latero-distally, left DLM laterally, left PLM proximo-laterally and left PM proximo-medially. C twice as long and wide as A and in contact with right LOP distally, right DLM latero-distally, right EXM/ILM laterally, right PLM proximo- latcrally and right and left PM proximally (Figs 2A, 3D). Suture between A and C with deep leftward concavity distally and less pronounced rightward concavity proximally (Figs 4A-D).
Convex surface. Convex surface of 5 small to large plates symmetrically arranged in centre, plus 8 plates extending up lateral and proximal margins from plano-concave surface. Proximal $2 / 3$ of convex surface of large, proximo-distally elongate, shield-like C20 and C22 plates, 1.5-2 times longer than wide (Figs 1B, 2C, 3D, 4F, $6 \mathrm{~A}, \mathrm{C}, 7 \mathrm{~B}, 9 \mathrm{~A}-\mathrm{C}, 12 \mathrm{~B}, \mathrm{D})$. Lateral $1 / 2$ of proximal
margins of such plates straight to strongly convex; median 1/2 deeply excavated for appendage insertion; lateral margins of both plates gently to moderately convex, sometimes showing abrupt curvature about half-way along their length; lateral and proximal margins merging into each other smoothly or at c. 120° (Figs 4F, 6A,C-D, 7B, 8B-D, 9A-C, $11 \mathrm{C}, \mathrm{E}$). Proximo-lateral part of external surface of both C20 and C22 distinctly sloping, almost vertical with respect to the rest of the plate in its distal $1 / 2$ and delimited distally by straight, slightly pronounced keel with steeper distal and gentler proximal slope (Figs 2B-D, 6C, 7B, 9B-C). Keels running latero-medially and proximo-distally from proximo-lateral angles of both C20 and C22, their length being less than $1 / 2$ the width of these plates. External margin of small facet for articulation with plates PLM visible on both C20 and C22 just latero-distal to lateral end of each keel (Figs 1B, 2B-D, 4F, 6A, C, 7B, 9B). Subelliptical to teardrop-shaped pit proximal to

 NMVPIOO332 D. NMVPIO0333.F. NMVPI(0)334.
median 1/3 of keel on C20 (Figs 1B. 2B-D. 6C. 7B. 9B). Distal 1/3 of comex surface oceupied by 2 subtraperoidal plates. slighty wider tham long and in contact with each other along very short, straight suture and with C21 and C22 along gently simuous sutures; latero-distal angles of subtraperoidal plates witl distally directed. blunt-ended processes (Figs IB. 2B-ㄷ.E. 3D, 4F 6A-D. 9B). Subquadrangular to lo\%enge-shaped C2I with straight to slightly comen margins in
contact with medio-distal margins of C 20 and C22 and with medio-prosimal nargins of subtraperoidal plates(Figs 2B-C.E.6A-D.7B.9B).
Distal arifice. Body orifice strongly twisted leftward. roofed over by right LOPand lloored by $6-7$ platclets arranged radially (Figs 1B. 2B-C. E. 4F. 6A-D). Right platelet subelliptical. with major axis almost perpendieular to longitudinal body axis: remaining platelets subrectangular to spike-shaped and decreasing progressively in

17G. 5. Adoketocarpus acheromicus gen, et sp. nov, all from NMVPL, 1927. A.C, plano- concave surface. B.D.
 *10 and 20 , respectively:
size from right to left: Ieft platelet subtriangular. With major axis parallel to longitudimalbody axis. Polygonal clements of irregnlar shape inserted
between proximal nargins of orifice platelels and distal murgins of subirape \%oidal plates. more mumerotis on the right than on the left. smaller

FIG. 6. Adoketocarpus acheronticus gen. et sp. nov all from NMVPL 1927. A. C, convex surface and proximal part of appendage. B, D, close-ups of orifice platelets. $A, B, N M V P 100337, \times 10$ and $\times 30$, respectively, C, D, NMVPIOO338, $\times 10$ and $\times 25$, respectively.
and transversely clongate near distal margins of subtrapezoidal plates. larger near proximal margins of orifice platelets; polygonal elements probably also covering proximal part of right latero-distal margin of right LOP (Fig. 6C-D).

Stereom. Plates of plano-concave surface with irregular. highly variable external texture, ma consisting of subcircular to subelliptical pores scparated by trabeculac (Figs 4A-E. 5A-C).

Thinner trabeculac and smaller subcircular pores visible ncar lateral body margins. Trabeculac often forming a fringe near plate sutures, where the pores are narrow and elongate and arranged radially. Irregularly radiating pattern of sinuous. elongatc, bifurcating trabeculae on marginal and subecntral plates, especially near their centres: adjacent trabeculac often sending at irregular intervals shorter. transverse trabeculae delimiting subrectangular to subelliptical pores.

FIG. 7. Aedhetocarpus acheronticus gen el sp, nov. all from NMVPLI927. A. NMVI'100339. inside of plano-concevesuriace and partially preserved appendage " 10 B . NMVP1(k)340, partially preserved conven surface. distal $1 / 3$ of inside ol plano-concase surtace ind disnopted appendage. 15.

Stereom ol subuertical projections of lateral marginal plates generatly compact or consisting of minute subcircular pores. Stercom of conves surface almost uniformly composed of circular pores and short trabceulae, the latter antanged radially near the plate sutures (Figs 4F, 6A-D. 7B, 9B-C). Stercom of orifice platelets coarsely granular or with very shallow pits surrounded by weak ridges (Figs + F , GB.D).
INTERNAL. Plate C. right LOP (in part) and left and right PM reveal most of the inside of the plano-concave sufface. but little is known about the interior of the lateral marginal elements (Figs 7A, 9B-C). So far as the convex surface is
concemed, onls the internal aspect of C 20 and C22 is known in detail. whereas the inside of the distal $1 / 3$ ol this surfice is only partially presenced.
Plane-concane surfoce, Right latero-distal angle of internal surface of right LOP occupied by median 1/3 of subcircular depression straddling suture with right DLM and continuing on adjacent part of internal surface of latero-distal angle of this plate (Figs 1B. 2C. E. 6C-D). 111ternal side of plano-coneave surfaee divided into 2 ficlds by oblique septun! (Ubaghs. 1967) (= oblique ridge of Jefferics, 1986) (Figs 7A-B. 8A: se in Fig. IOB): distal $1 / 3$ of septum with marked

FIG. 8. Adoketocurpus acheronticus gen. et sp. nov, all from NMVPL 1927. Intemals of skeletal plates. A. NMVP 100340 , disrupted distal $1 / 3$ of plano-concave surface: the element near top centre is right LOP, $\times 25 . \mathrm{B}$, NMVP100342, inside of C20, $\times 20 . \mathrm{C}$, NMVP100343, plates $\mathrm{C} 20 . \mathrm{C} 21, \mathrm{C} 22$, left and right PM, left PLM, $\times 16$. D, NMVP100344, inside of $\mathrm{C} 20, \times 12$

FIG. 9. Idoketocarpus acheromicus gen et sp. nov, all from NMVPL1927. A, NMVP100345, inside of C20, $\times 12$. B, NMVP 100346 , convex surface, partially disrupted distal $1 / 3, \times 10 . \mathrm{C}, \mathrm{NMVP1}()() 347$, slightly damaged C20 in external vien, $\times 12$.
rightward convexity occupying distal $2 / 3$ of internal surface of ${ }^{\circ} \mathrm{C}$ (Figs 6C-D. 7A-B. 8A): distalmost cud rapidly weakening where it straddles suture between C and right LOP and vanishing distally on the internal surface of the latter: proximal $2 / 3$ of septum straight, thicker than convex part and bending sligltty to the right in cross-scetion: convcx part passing gradually into straight part: boundary bctween these 2 parts delimited by elongate and poorly defined thickening (= dimimutive spur of Ubaghs, 1967
and base of middorsal proccss of Jcfferies, 1986) (Fig. 7A-B); straight part of septum running obliquely from internal side of proximal $1 / 3$ of C to internal sidc of left PM, straddling suture just lateral to medio-distal angle of left PM (Fig. 10A-B).
Proximalmost end of septum merging into cuplike left scutuła (Ubaghs, 1967) (= dorsal calcitic cup of left pyriform body of Jcfferies. 1986) (sc in Fig. 10B) delimited by slightly raised, thick. subcircular seutular rim. Deep transverse furrow

FIG. 10. Adoketocarpus acheronticus gen. et sp. nov, from NMV1LL 1927, intenal surface of left PM plate. A. NMVP100348, $\times 25$, latex cast coated with ammonium chloride. B, cannera lucida drawing ol the same specimen: abbreviationsas in text. C, NMVP 100339 , natural internal mould of proximal $1 / 3$ of the 2 PM plates, $\times 25$. D, NMVP 100.344, natural intemal mould of proximal $1 / 3$ of $\mathrm{C} 20, \times 25$.
(= transverse anterior groove of Ubaghs. 1967 and anterior boundary of posterior eoclom of Jefferies, 1986) (tf in Fig. 10B) running from nedio-distal part of seutular rim to median margin of both left and right PM and delimiled distally by prominent transverse ridge, straight to
slightly eonvex distally (tr in Fig. 10B). On the left PM, the median end of such a ridge merges into the proximalmost end of the septum. where the latter beeomes confluent with the mediodistal part of the seutular rim. Two slightly eurved ridges on internal side of the left PM platc.
poorly developed or absent on the right PM, running almost parallel to each other or strongly diverging medio-latcrally, and less robust than proximal part of septum; distal ridge (dr in Fig. 10B) projecting proximo-distally or transversely along gently curved direction from lateral wall of scutular rim to lateral margin of both PM plates where it widens and becomcs less pronounced; distal ridge of left PM probably corresponding to accessory septum of Ubaghs (1967) (= posterior boundary of left pharynx of Jefferies, 1986); proximal ridge (pr in Fig. I0B) slightly shorter than distal ridge, almost straight and parallel to proximal margin of cach of the two PM plates. Right PM differing from left PM in the small pit (= infundibulum of Ubaghs, 1967 and pit for dorsal end of lateral line ganglion of Jefferies, 1986) lying proximo-lateral to right scutula (Fig. 8C). Shallow groove (sg in Fig. 10B) for articulation with C20 and C22 running parallel to lateral part of proximal margins of left and right PM, and becoming progressively shallower near its lateral end; median end of groove interrupted by small ridge projecting latero-mcdially from medio-proximal part of scutular rim to lateral angle of external margin of excavation for appendage articulation ($=$ cerebral basin of Jefferies, 1986). Proximalmost part of internal side of lateral margin of left and right PM showing 'step' ('s' in Fig. 10B) delimiting sudden change in the curvature of this margin and presumably representing interlocking articulation with left and right PLM respectively. Mcdian part of both left and right scutular rim merging medialIy into transversely expanded areal occupying median $1 / 3$ of internal margin of excavation for appendage articulation, and presumably representing basal portion of each of the 2 apophyseal horns (Ubaghs, 1967) (=hypocerebral processes of Jefferies, 1986) (ah in Fig. 10B), not prescrved in available matcrial. Excavation on both PM plates consisting of shallower distal and deeper proximal parts: distal part (=prosencephalar part of ccrebral basin of Jefferies, 1986) delimited by internal margin of excavation and by thin ridge rumning along slightly oblique direction from bases of apophyseal horns to proximo-medial angle of both plates; distal part (=deutcrencephalar part of cercbral basin of Jefferies, 1986) delimited by above mentioned thin ridge and by external margin of excavation.

Convex surface. Cup-like co-operculum (Ubaghs, 1967) (= dorsal calcitic cup of pyriform body of Jefferies, 1986) near proximo-lateral angles of C20 and C22 (Figs 8B-D, 9A),
delimited by rim with thicker proximo-lateral and thinner medio-distal margins; rim interrupted medially by short deep, transverse sulcus extending from excavation of co-operculum to portion of inner surface between co-operculum and proximal margins of C20 and C22; at the level of sulcus, both ends of co-opercular rim continue medially into slightly raised ridges parallel to median excavation of proximal margin of C20 and C22. gently convex distally and delimiting very shallow groove. Lateral wall of left and right co-opercula merging gradually into proximalmost part of lateral margin of both C20 and C22. Lateral $1 / 2$ of proximal $1 / 3$ of internal surface of both plates much deeper than the rest of the internal surface and showing 2 ridges ($=$? $n 1$ and n 3 branches of palmar complex of Jefferies, 1986) projecting from distal wall of co-operculum, running close to each other distally for a short distance, then bending slightly medially and diverging from each other before disappearing abruptly medially (Figs 8C-D, 9A). Proximo-lateral part of co-opercular rim of C20 (Figs 8B, D, 9A) housing smalt subcircular pit (= pit of latcral line ganglion of Jefferies, 1986), c. $1 / 3$ size of co-operculum and corresponding in position to infundibulum on inner surface of right PM. Straight, poorly pronounced ridge (= ? ventral anterior boundary of posterior coclom of Jefferies. 1986) running obliquely from a point just distal to each co-operculum to median margin of C20 and C22, at c.45 to longitudinal body axis (Fig. 8D). Transversely clongate facet for articulation with PM plate visible along lateral $1 / 2$ of distal margins of C20 and C22, immediately proximo-lateral to co-opercula.
Stereom. Internal texture of subcentral and lateral marginal elements of plano-concave surface resembling external texture in the radial arrangement of trabeculae and porcs (Figs 7A-B. 8A). Stereom of inside of left and right PM (Figs 8C, 10A) consisting of irregular meshwork of stout trabeculae and extremcly irregular pores of different shapes and sizes, replaced by more compact texture on septum, scutular rim and bases of apophyscal horns as well as along proximal edge of both PM plates. Elongate, sometimes confluent pores along proximal and distal ridge on lateral half of PM plates. Stcreom of excavation for appendage insertion with generally small, rounded pores and thin trabeculae (Figs 8B, D, 9A, 10A). Texturc of inside of C20 and C22 consisting of regularly arranged circular pores, slightly smaller peripherally than
centrally. Stereom of co-opercula compact (Figs 8B-D, 9A).

APPENDAGE. Proximal part. 5-6 tetramerous rings overlapping each other proximo-distally; degree of overlap greater proximally than distally; distalmost ring slightly smaller than others and tightly wrapped around proximal styloid process: latero-distal angles of ring plates gently rounded (Figs 2A-B, 4B, D, F, 5A-D, 6A, C).
Intermediate parl. Styloid with robust, stout proximal blade, triangular in section, lcss expanded transversely than distal blade and carrying a blunt apex; distal blade slightly bent towards the proximal blade in lateral view and with small, flat, triangular distal bearing surface. Sharp longitudinal keel running between the two blades, with parabolic outlinc in lateral view. Lateral styloid surfaces gently concave (Figs 5A-D, 12C).
Distal part. Few proximal ossicles preserved (mostly disarticulated), subrectangular in lateral view and apparently poorly developed, blunt apexes, except in the first two ossicles, possibly carrying a small distal bearing surface (Figs $7 \mathrm{~A}, \mathrm{~B}, 12 \mathrm{~A}-\mathrm{D})$.
Stereom. Minute pores and thin trabeculae centrally on proximal ring plates and styloid; more compact stereom near margins of ring plates and on ossicles.

REMARKS. Adoketocarpus acheronticus displays little morphological or ontogenetic variation, as evidenced by small changes in the shape and proportions of several isolated skelctal elements of different sizes, which presumably belong to individuals of different ages, and by the similar proportions of complete specimens. The largest known individuals are either pyriform or ovato-lanceolate, whereas small to medium-sized individuals are only slightly longer than wide and their lateral margins are convex. Such differences are only partly caused by deformation. Deformation is, however, negligible in most cases, as the specimens are often found slightly disrupted but without signs of breakage. Likewise, disarticulated plates lying in proximity to each other are rarely broken; often, they are turned upside down or slightly rotated.

The right LOP, A, left and right PLM, left and right PM and C20 and C22 plates are most variable. The right LOP is sutured to the rest of the skeleton in most specimens, slightly displaced in a few specimens and rarely isolated. In the smallest specimen (Fig. 4C,F), the right

LOP is more asymmetrical and elongatc proximo-distally than in larger specimens (Figs 4A-B, D-E, 7B, 8A); its distal process is distinctly triangular with a blunt. latero-distal angle, and its latero-distal margins are deeply embayed. Together with the left PM, this is the largest element of the plano-concave surface. The distal process and bilateral symmetry of the right LOP vary in larger specimens. Thus, in some individuals the right LOP becomes almost bilaterally symmetrical (Figs 4D-E, 7B, 8A), whereas in others left and right latero-distal margins of this plate differ in length and orientation with respect to the longitudinal body axis, so that its distal process is displaced with respect to this axis (Figs 4A,B, 11A).

The outline of plate A varies from subrectangular in small and medium specimens to elongate pentagonal or subtriangular in large individuals (Fig. 4A-E).

The PLM plates have 3-4 sharp, proximal lateral serrations with steep distal margins in small to medium specimens; in large specimens, the serrations are more numerous, blunt-ended and with less steep distal margins: size of the serrations does not scem to change at different ontogenetic stages (Figs 4A-E, 5C).

In the smallest individual (Fig. 4C,F), distal margins of the PM plates are much shorter than proximal margins, and the proximal excavation for insertion of the articulated appendage is shallower than in larger individuals.

Plates C20 and C22 are 2.5-3 times as long as wide and differ mainly in degree of curvature of their lateral margins and in length and orientation of their medio-distal margin. One isolated C20 (Fig. 8B) has a more elongate and concave medio-distal margin and broad median emargination in its proximal margin. In the same plate, a ridge runs for c. $2 / 3$ plate width from the proximal end of its medio-distal margin to a thickened triangular area latcro-distal to co-operculum: median $2 / 3$ of ridge almost straight; lateral $1 / 3$ bent strongly towards co-opcrculum. Shallow areas present just proximal to the ridge, and delimited proximally by a second, fainter transverse ridge running from median margin of C 20 to a point c. $1 / 2$ along maximum plate wiclth before disappearing abruptly laterally.

Adoketocarpus janeae sp. nov.

(Figs $11 \mathrm{~B}, \mathrm{C}, 12 \mathrm{E}, 13$)
ETYMOLOGY. For Jane Jell, who helped collect the material described herein.

FIG II. A, D,E, Adoketocarpus acheromicus gen. et sp. nov:, from NMVPL1927. A, plano-concave surface of QMF37208, $\times 9$. D,E, plano-concaveand convex surfaces of QMF37214, $\times 12.13, \mathrm{C}$, Adoketocarpusjaneae gen. et sp. nov., from NMVPL 252, plano- concave and convex surfaces of NMVP149391, $\times 12$.

MATERIAL. Holotype: NMVP100359. Paratype: NMVP100360 from NMV1'L 1924 on Mathiesons Creek north of Kinglake West (=T95 of Williams 1964), NMVP149391, 149392 from NMVPL252.

DIAGNOSIS. Lateral margins almost straight. Left DLM and right EXM/LLM subequal in lengtlı. Left LOP and right DLM smaller than other margimal plates and approximately equal in size. Left LOP median to left latero-distal angle of plano-concave surfacc. Plate A narrow and clongatc. Plate C slightly wider proximally than distally.

DESCRIPTION. Gencral aspect. Only those skelctal fcatures which distinguish A. janeae from A. acheronticus are discussed in detail here.
Lateral margins of body straight for most of their length and only slightly converging distally. Left DLM and right EXM/ILM much longer than wide and of similar slape and size: distal margin of Icft DLM at $+5^{\circ}$ with longitudinal body anis. Frec margins of left LOP (distal in position) and of right DLM gently convex: frec margin of right DLM about 3 times as long as medio-proximal margin. Left LOP lying median to left laterodistal angle of plano-concave surface and contributing only to a small extent to left lateral

FIG. 12. A-D. Adoketocarpus acheronticus gen. et sp. nov., from NMVPL 1927×10. B , disrupted body and appendage QMF 37202. C, isolated stylond and ossicles QMF37213. D, partial convex surface and ossicles QMF 37212. E, Adoketocarpus janeae gen et sp, nov., disrupted convex surface of NMVP149392 from NMVPL252, $\times 10$.

FIG. 13. dohetocarpus janeae gen et sp. nov., from NMVPL1924. A. NMVP100359, holotype, almost complete, slightly distupted, plano-concave surface, $\times 10$. B, NMVI' 100360 , partially disrupted, incomplete, plano-concave suirtace. $\times 10$.
body margin. Right LOP with semi-elliptical distal process and markedly sinuous proximo-lateral margins, and c. $1 / 2$ as large as C: left latcro-distal margin of right LOP at c. 120° with free margin of left LOP. Latcral $1 / 2$ of proximal margin of cach of the 2 PM plates passing gradually into median I/2: the latter only slightly concave and mecting its antimere at c. 120° : suture between left and right PM straight. C slightly wider proximally than distally. Suture between A and C gently concave Ieftward throughout most of its length. Plate A at least 3 times as long as wide and in contact with Icft arm of distal. chevron-shaped margin of left PM along very short suture Robust. sharp serrations partly visible along disrupted lateral margin of right PLM in the less complete of the 2 specimens observed. Stereom structure of coarse pores and irrcgular, sinuous trabcculac: pores decreasing in size towards plate sutures.
Measurements. NMVP100359 (Fig. 13A) is 5.7 mm wide and 7.8 mm long.

REMARKS. Attribution of the Lower Devonian specics to A Idoketocarpus is based on the plating
pattern of the plano- concave surface. but only 4 individuals permit limited comparisons with the type specics. The differences between the Lower Devonian and the Upper Silurian taxa warrant a distinct specific assignment for the former.
Such features of A. joneae as shapc and rclative proportions of left LOP and left DLM and high length/width ratio of A are similar to those in E. savilli Beisswenger. 1994 from the Llandeilo of Morocco (Fig. 3C). In E. savilli and A. acheromicus, the lcft LOP builds the 1cft latero-distal angle of the plano-concave surface and the most proximal part of its lateral margin contributes to the Icft latcral body wall. In both species, the left latero-distal margin of the right LOP and the free margin of the left LOP meet at an obtuse angle. In A. jancae, the Icft LOP lies almost completcly median to the left latero-distal angle of the plano-concave surface and its free margin is at $\mathrm{c} .120^{\circ}$ with the left latero-distal margin of the right LOP. Adoketocarpus faneae shows a more bilatcrally symmetrical body outline than either A. acheronticus or E. savilli (Figs 3C.D. 13A) although clements of asymmetry are crident in the arrangement of the distal marginal
plates of the plano-coneave surfaee and in the different length of the left and right lateral margins of the body.

The higher degree of bilateral symmetry of A. jomeae is also observed in the shape of the right LOP, the distal process of which lies only slightly to the left of the longitudinal body axis. Because the only convex surface of A. joneae is not well preserved (Fig. 12E) its degree of asymmetry is uncertain.

COMPARISONS BETWEEN ADOKETOCARPUS AND OTHER PARANACYSTIDS

Members of the Paranacystidae Caster. 1954 (Ruta, 1997c) are readily identified by scveral features such as the plate configuration of the eonvex surfaee and the 2 unequal subcentral plates on the plano-eoneave surface. As defined by Caster (1954) the family ineludes Paronacystis petrii Caster, 1954, P. simoneac Ruta. 1997 c, Adoketocarpus acheronticus and A. joneae. Haude (1995) placed Yochalicystis triangularis from the Lower Devonian of Argentina in the Paranacystidae, based on the 2 large, proximo-distally elongate plates on the convex surface and on details of the stereom. Ruta (1997c) tentatively assigned the Middle Devonian Dalejocystis casteri Prokop, 1963 from Bohemia to the Paranacystidae, based on its overall resemblanee to Y. triangilaris. However, both X. triangularis and D. casteri are too poorly preserved for their affinities to be fully evaluated, and will not be considered further here. Because the material of A. ionecre is ineomplete, the following discussion foetusses mainly on A. acheronticus, exeept where a direet comparison between the Lower Devonian form and other paranacystids is necessary.

The body outline is more asymmetrical in A. acheronticus than in either Paranacystis speeies. With the exception of the left and right PLM. the remaining lateral marginal plates of the planoconcave surface of A.acheronticus do not form pairs of elements of similar shape and size, and are smaller than either left or right PLM; conversely, in both Paranacystis species, the lateral marginal elements immediately distal to PLM are almost mirror images of each other and comparable in size with these plates. In A. janeae, the left DLM and the right EXM/ILM are similar in slape and size.
A. acheronticus differs from both Parconacystis species in that plate A is only slightly longer than
wide and much smaller than C ; in addition, C is much wider in A. acheronticus than in cither Paranacystis speeies; in P. simoneae, C has a robust, distal triangular process (Ruta. 1997c).

As in P. simoneae, the 2 PLM plates of A. acheronticus have a lateral longitudinal row of denticulations. In P. simoneac, these are smaller than in A. acheronticns and shaped like subelliptical, proximo-distally elongate knobs confined to the proximal $2 / 3$ of left and right PLM. In both Paranacystis species, the proximal excavation for appendage insertion is wider and deeper than in A. acheronticus. The distal, subtrapezoidal plates of the convex surface are much larger with respect to C20 and C22 in P. petrii (eonvex surface not preserved in P. simoneae) than in A. acheronficus; in addition, the suture formed by the 2 subtrapezoidal plates is shorter in the latter than in P. petrii.

For Caster (1954), the distal plates of P. petrii were imbricate in life and acted as an ostial cover; he considered this feature diagnostic of the family. A. acheronticus suggests that ostial elements identified by Caster (1954: figs la-e, 2b) in P. petrii are homologous with the left LOP, right DLM and/or right LOP plates. In A. acheronticus, the right LOP is tightly sutured with the rest of the plano-concave surface and does not seem to have formed a flexible artieulation in life. In a disrupted paratype of P. petrii (Caster, 1954, fig. 3b), the distal $1 / 2$ of the internal mould of plano-concave surface shows a subpentagonal plate sutured on the right with a small trapezoidal element. These 2 plates eorrespond to the right LOP and right DLM of A. acheronticns respectively, based on shape and position (see Caster, 1954. fig. 1e). In A. acheronticns the distal margins of the left LOP and right DLM are partly visible when the convex surface is oriented towards the observer, suggesting that the so-called ostial elements of \mathscr{P}. petrii are likely to be displaced and/or disrupted plates of the distal margin of the plano-concave surface.

Distal plate eonliguration of the plano-concave surfaee in A. acheronticus differs from that of P. simoneae, in which C carries a distal triangular proeess. The shape and position of this process resemble those of the right LOP in A. acheronticus; homology of this C process is uncertain. In P. simoneae, a small pit near the right proximal angle of the C proeess oecupies the same relative position with respect to the body orifice as the subcircular depression on the underside of the right latero-distal angle of the right LOP of A.
acheronticus. However, the distal part of the plano-concave surface of P simoneae is not well-known; Ruta (1997e) mentioned the possibility that some skeletal elements (possibly the left LOP and tight DLM) in the only known specimen of this mitrate are either displaced or not preserved.
A. acheronticus permits a more accurate diagnesis of the Paranacystidae. The distal elements of the plano-concave surface did not act as an ostial cover, as surmized by Caster (1954) in P petrii. Rather, this part of the skeleton was rigid and roofed over the body orifice. The distalmost region of the convex surface, on the other hand. was probably flexible, as indicated by the smal! irregular plates surrounding the orifice platelets. This flexible integument is documented in several initrates (Ubaghs, 1967, 1979; Jefferies \& Lewis, 1978; Kolata \& Jollic, 1982; Jefferies 1986; Cripps, 1990; Parsley, 1991; Beisswenger. 1994: Ruta, 1997b)

DISCUSSION. $\operatorname{In} A$. acheronticus the smplified plating pattern of the proximal $2 / 3$ of the convex surface is probably a derived condition compared with that of the mitrocystitids and anomalocystitids. On the other hand, the pit on C20 is shared with several mitrocystitids (Chauvel, 1941; Ubaghs, 1961, 1967, 1979, 1994, Cripps. 1900; Ruta. 1997b) which are considered by many workers to be more primitive than the anomalocystitids iJefferies. 1967, 1968 , 1973, 1986, 1991; Craske \& Jefferies, 1989 Cripps 1990; Beisswenger 1994: Ruta, 1997b, in press: Ruta \& Theron, 1997; but see Ubaghs, 1979 and Parsley, 1991).
A twisted orifice at a high angle to the axis of the body is found in Viscainocarpus dentiger (Ruta, 1997b), in young individuals of Mito(2)stites mitra (Jefferies, 1968; Ubaghs, 1967) and in Eumitrocystella savilli (Beisswenger, 1994) among the mitrocystitids, although less pronounced asymmetry of this structure is observed in other mitrates (Thoral, 1935; Ubaghs, 1967, 1969, 1979; Jefferies, 1986).
There are fewer tightly sutured polygonal elements on the plano-concave surface of A. acheronticus than on other mitrocystitids or anomalocystitids. The 2 subcentral elements on the plano-concave surface also occur in E. savilli and most anomalocystitids, although this condition ean be shown to have evolved in patallel in the 2 latter groups (Beisswenger, 1994; Ruta \& Theron, 1997: Ruta, in press). In particular, the position of plate A , between C and the left lateral
marginal clements of the plano-concave surface. recalls the skeletal configuration of the allaricyrididanomalocystitids (Ruta \& Theron, 1997),

The fewer plates of the convex surface and large C20 and C22 also occur in peltocystid mitrates (Thoral, 1935; Ubaghs, 1967, 1969: Jefferies, 1986; Parsley. 1991); however, these differ from A, wheronificus in several aspects of the plating pattern of the plano-concave surface A. acheronticus and E. savilli have 2 subcentral, unequal plates on the plano-coneave surface and a distal plate roofing over the orifice. In most mitrocystitids and all anomalocysititids, the orifice is delimited by a tow of distal marginal plates on the planio-concave surface, consistiong of a median (MOP) and two lateral (LOP) elements. Based an topological similarity, Beisswenger (1994) hypothesized that MOP (= platern) was lost in E. savilli, and that the distalmost element of the plano-concave surface is an enlarged and medially displaced right LOP (= plate c of Beisswenger. 1994). This hypothesis was supported by three arguments, two of which also apply to A. acheronticus.
His first argument is based on the reconstructed internal features of the distalmosi plate of the plane-concave surface of E. savilli, which "... carries the begiming of the oblique ridge and builds part of the Tateral [body] wall as in other mitrates' (Beisswenger, 1994: 448). Part of the internal side of the plano-concave surface can be observed in A. acheronticus (Figs 7A-B. 8A) where the distal end of the oblique ridge is parny visible on the proximal $1 / 3$ of the jnternal surface of right LOP The right LOP is larger than the elements lying immediately proximal to it. shows the same spatial relationships with these as in E. savilli and closely resembles the like-narned plate of the latter in its genetal shape and in the development of a blunt distal projection covering the orifice platelets. The right LOP of A. acheronticus does not contribute to the right lateral body wall to the same extent as its proposed homologue in E savilli, in that it is slightly displaced to the left with respect to the main body axis, presumably as a result of increased torsion of the orifice caused by the loss of a left lateral marginal element.

In A. acheronticus, almost the complete course of the oblique ridge is visible on the convex surface as a result of compaction (Figs 4F, 6A, (-D), 7B, 9B), showing that the distalmost end of the ridge lies on the proximal part of the internal stirface of the right LOP. On the plano-concave
surface, the suture between the right LOP and C (= plate 12 of Beisswenger, 1994) straddles the distalmost portion of the oblique ridge. The distalmast part of the ridge appears as an impression on the median half of the right distal subtrapezoidal plate of the convex surface.
The second of Beisswenger's (1994) arguments is an hypothesis of morphological transformation inferted from the first argument: loss of MOP and increase in size and leftward displacement of the right LOP would explain leftward twisting of the orifice. If correctly interpreted, this transformation is mone evident in 4. acheronticus, where the orifice opening forms an angle of about 30° with respect to the main body axis. than in E. savilli, where this angle is about 45°.
Beisswenger's (1994) third argument is not directly applicable to A. acheronticus. as it involves comparison between plate organization on the plano-concave surface of E. savilli (Fig. 3C) and Mitrocystella incipiens (Fig. 3B) which closely resemble each other in proportions and relative positions of the subcentral and of left and right lateral inarginal plates. Comparing these similar arrangements to the more primitive arrangement in M. Furrandet (Fig. 3A), thajor differences in the distal $1 / 3$ of the plano-concave surface are interpreted as resulting from Ioss of plate B (= plate 11 of Bcisswenger, 1994) in E, savill. Plate configuration of the distal $1 / 3$ of the plaño-concave surface in A. acheranticus matches that of E. savilli, and suggests that B may be secondarily absent in the Australian taxon.
The number of lateral marginal plates in A. acheronieus is reduced by one on the riglt and on one the left with respect to E, sarilfi, and the relative size and spatial relationships of the elements lying to the left of C are very similar to those of the left LOP, left DLM and A plates $(=$ plates b, 3 and 10 of Beisswenger (1994), respectively). Based on their shape and position, proximal left and right lateral marginal plates correspond to PLM (= plates) and fof Beisswenger (1994), respectively). Assuming the correct identification of the other plates, it is reasonable to hypothesize that the left ILM $=$ plate 2 of Beisswenger. 1994) was lost in A. acheramicus, and that such a loss brought A in contact with the lefi PLM and left PM.
The right lateral marginal plates are more dilficult to interpret. Comparison with E. savilli indicates that a plate of the right side of the body was lost in A. acheronticus. This plate might
correspond to the right EXM or TLM (= plates 6 and 7 of Beisswenger (1994), respectively) in E. savilli (Ruta, in press), but it cannot be identified unambiguously: bence, our right EXM/IL M notation for the marginal plate lying to the right of C . Finally, the left and right PM correspond to plates iand h of Beisswenger (1994), respectively, based on their shape, position and internal surface.
The resemblance between E. savilli and Adoketocarpus has implications for the origin and diversification of the Paranacystidae. We propose that the Paranacystidae derive from an ancestor resembling E , suvilli through a simplification of the plate configuration. Further steps in this lineage may have been the acquisition of bilateral symmetry and a greater elongation of the body. Compensation for the asymmetrical body ouiline may have been achieved through moditication of the relative proportions of the marginal plates of the plano-6oncave surface. In A. acheronticus, plate asymmetries are evident on this surface, but in A, janeae and in other paranacystids (Caster, 1954; Ruta, 1997c), such asymmerties disaphear or are drastically reduced. Bilateral symmetry probably oceurred proximo-distally, affecting the marginal elements first (as in A. ianeae) followed by the subcentral plates (as in Parunacystis).

CONCLUSIONS

Adaketocarpus: 1) is the first representative of the Paranacystidae Caster, 1954 recorded trom Australia; 2) from the Upper Silurian predates the next earliest family record in the Lower Devonian of South America (Caster, 1954; Caster \& Eaton. 1956: Haude, 1995); 3) provides great detail of its external and internal anatomy, throwing light on several poorly known aspects of the paranacystids and prompting re-interpretation of skeletal organization of the family (Caster, 1954. Haude. 1995; Ruta, 1997c); 4) provides additional evidence of the affinities between Siluro-Devanian mitrates from Australia and those from the Malvinokaflric Realm (Caster, 1954, 1956. 1983; Gill \& Caster, 1960; Caster \& Gill, 1967, Philip. 1981: Parsley, 1991; Haude, 1995; Ruta \& Theron,]997; Ruta, [997c); 5) shows that the paranacystids probably evolved from the paraphyletic mitrocystitids: E. savilli closely resembles Adokerocarpus, especially in the plano-concave surface and in the strongly twisted orifice. Evolution of the paranacystids Was characterized by progressive increase in the bilateral syminetry of the body and of the lateral marginal plates.

ACKNOWLEDGEMENTS

M.R. thanks the Queensland Museum and its staff for use of facilities and for hospitality, A.R. Milner (Birkbeck College, University of London) for comments and suggestions, B. Lefebvre (Université Claude Bernard, Lyon) and R.L. Parsley (Tulane University, New Orleans) for stimulating discussions and Julia Day and Simone Wells (Natural History Museum, London) for encouragement. R.P.S. Jefferies, A.C. Milner, S.J. Culver and L.R.M. Cocks (Natural History Museum, London) read the manuscript. P. Crabb (Natural History Muscum, London) took most of the photographs. We thank Ron Parsley and Reimund Haude for their useful reviews but the views set out above are those of the authors alone. M.R. is in receipt of a European Community grant (Training and Mobility of Researchers). The Museum of Victoria is thanked for loan of the material and David Holloway and Fons Vandenberg are thanked for help with field collecting.

LITERATURE CITED

BEISSWENGER, M. 1994. A calcichordate interpretation of the new mitrate Eumitrocystella savilli from the Ordovician of Morocco. Paläontologische Zeitschrift 68: 443-462.
CASTER, K.E. 1952. Conceming Enoplonra of the Upper Ordovician and its relation to other carpoid Echinodermata. Bulletins of American Paleontology 34: 1-47.
1954. A new carpoid cchinoderm from the Parana Devonian. Anais da Academia Brasilcira de Cićncias 26: 123-147.
1956. A Devonian placocystoid cchinoderm from Paraná, Brazil. Palcontologia do P'araná (Centennial Volume): 137-148.
1983. A new Silurian carpoid echinodern from Tasmania and a revision of the Allanicytididac. Alcheringa 7: 321-335.
CASTER, K.E. \& EATON, T.H. Jr 1956. Microstructure of the plates in the carpoid echinoderm Paranacystis. Journal of Paleontology 30: 611-614.
CASTER, K.E. \& GILL, E.D. 1967. Family Allanicytidiidae, new family. Pp. 561-564. In Moore, R.C. (cd.) Treatise on invertebratc palcontology. Part S. Echinodermata 1. (Gcological Society of America \& University of Kansas: New York).
CHIAUVEL, J. 1941. Recherches sur les cystoïdes et les carpoïdes armoricains. Mémoires de la Socićtć Géologique et Minéralogique de Bretagne 5: 1-286.
CRASKE, A.J. \& JEFFERIES. R.P.S. 1989. A new mitratc from the Upper Ordovician of Norway, and a new approach to subdividing a plesion. Palaeontology 32: 69-99.

CRIPPS. A.P. 1990. A new stem craniate from the Ordovician of Morocco and the search for thc sister group of the craniata. Zoological Journal of the Linncan Society 100:27-71.
GARRATT, M.J. 1983. Silurian and Devonian stratigraphy of the Melbourne Trough, Victoria. Proceedings of the Royal Society of Victoria 95:77-98.
GILL, E.D. \& CASTER, K.E. 1960. Carpoid cehinoderms from the Silurian and Devonian of Australia, Bulletins of American Paleontology 41: 5-71.
HAUDE, R. 1995. Echinodermen aus dem UnterDevon der argentinischen Präkordillere. Neues Jahrbuch für Geologie und Paläontologie, Ablandlungen 197: 37-86.
JAEKEL, O. 1918. Phylogenie und System der Pelmatozocn. Paläontologische Zcitschrift 3: 1-128.
JEFFERIES, R.P.S. 1967. Some fossil chordates wilh cchinoderm affinities. Pp. 163-208. In Millot, N. (cd.) Echinoderm Biology. (Academic Press: London).
1968. The Subphylum Calcichordata (Jefferies 1967) - primitive fossil chordates with echinodern affinities. Bulletin of the British Museum (Natural History), Geology Series 16: 243-339.
1973. The Ordovician fossil Lagynocystis pyramidalis (Barrande) and the ancestry of Amphioxus. Philosophical Transactions of the Royal Socicty of London, Series B 265:409-469.
1986. The ancestry of the vertebrates. (British Museum (Natural History): London).
1991. Two types of bilateral symmetry in the Metazoa: chordate and bilatcrian. Pp. 94-127. In Bock, G. R. \& Marsh, J. (cds) Biological asymmetry and handedness. (John Wiley \& Sons: Clichester).
JEFFERIES, R.P.S. \& LEWIS. D.N. 1978. The English Silurian fossil Placocystites forbesiamus and the ancestry of the vertebrates. Philosophical Transactions of the Royal Society of London, Series B 282: 205-323.
KOLATA, D.R., FREST, T.J. \& MAPES, R.H. 1991. The youngest carpoid: occurrencc, affinities and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma. Journal of Palcontology 65: 844-855.
KOLATA, D.R. \& JOLLIE, M. 1982. Anomalocystitid mitratcs (Stylophora. Echinodernata) from the Champlainian (Middle Ordovician) Guttenberg Formation of the Upper Mississippi Valley Region. Journal of Paleontology 56: 531-565.
PARSLEY, R.L. 1991. Review of selected North American mitrate stylophorans (Homalozoa: Echinodermata). Bulletins of American Paleontology 100: 5-57.
PHILIP, G.M. 1981. Notocurpos garratti gen. et sp. nov, a new Silurian mitrate carpoid from Victoria. Alcheringa 5: 29-38.

RUTA, M. 1997a. Redeseription of the Australian mitrate Inctoriacystis with comments on its finctional morphology. Aleheringa 21: 81-101.
1997b. A new mitrate from the lower Ordovician of southern France. Palaeontology 40: 363-383.
1997 c . First record of a paranacystid mitrate from the Bokkeveld Group of South Africa. Palaeontologia Africana 34: 15-25.
In press. A cladistic analysis of the anomalocystitid mitrates. The Zoologieal Journal of the Linnean Society.
RUTA, M. \& JELL. P.A. 1999. Two new anomalocystitid mitrates from the Lower Devonian Humevale Formation of eentral Victoria. Memoirs of the Qucensland Museum 43: 399-422.
RUTA, M. \& THERON, J.N. 1997. Two Devonian mitrates from South Africa. Palaeontology 40 : 201-243.
TALENT, J.A. 1967. Silurian sedimentary petrology and palacontology. Bulletin of the Gcological Survey of Victoria 59: 24-29.
THORAL, M. 1935. Contribution à l'étude palcontologique de 1° Ordovieien inféricur de la Montagne Noire et révision sommaire de la faune cambrienne de la Montagne Noire. (Imprimerie de la Charité: Montpellier). 363 p .
UBAGHS. G. 1961. Un échinoderme nouveau de la classe des Carpoïdes dans l'Ordovicien intéricur du département de l'Herault (France). Compte

Rendu Hebdomadaire des Seances de l'Academie des Sciences, Paris 253: 2565-2567.
1967. Stylophora. Pp. 496-565. In Moore, R. C. (ed.) Treatise on invertebrate palcontology. Part S. Echinodermata 1(2). (Geological Socicty of America \& University of Kansas: New York).
1969. Les éehinodermes carpoïdes de l'Ordovicien intérieur de la Montagne Noire (France). Cahiers de Paléontologie. (éditions du Centre National de la Recherche Scientilique: Paris). 112p.
1979. Trois Mitrata (Echinodermata, Stylophora) nouveaux de I'Ordovicien de Tehécoslovaquie. Paläontologische Zcitschrift 53: 98-119.
1994. Echinodermes nouveaux (Stylophora, Eocrinoidea) de 1^{\prime} Ordovicien inférieur de la Montagne Noire (France). Annales de Paléontologie. Invertébrés 80: 107-141.
VANDENBERG, A.H.M. 1988. Silurian-Middle Devonian. Pp. 103-146. In Douglas, J.G. \& Ferguson, J.A. (eds) Gcology of Victoria. (Victorian Division of the Cicological Society of Australia: Melboume).
1992. Kilmore 1:50.000 map and geological report. Geological Survey of Victoria Report 91:1-86.+ map.
WILLIAMS. GiE. 1964. The geology of the Kinglake District, central Victoria. Proccedings of the Royal Socicty of Victoria 77: 273-328.
WITHERS, R.B. 1933. A new genus of fossil king crabs. Proccedings of the Royal Socicty of Victoria 45: 18-22.

